Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Ray, Rashmi (Ed.)We study the decay of a homogeneous condensate of a massive scalar field of mass into massless fields in thermal equilibrium in a radiation dominated cosmology. The model is a for the nonequilibrium dynamics of a misaligned axion condensate decaying into radiation. After consistent field quantization in the cosmological background, we obtain the linearized causal equations of motion for a homogeneous condensate including the finite temperature self-energy corrections up to one loop. The dynamical renormalization group is implemented to obtain the time dependent relaxation rate that describes the decay dynamics of the condensate amplitude from stimulated emission and recombination of massless quanta in the medium. It is explicitly shown that a simple friction term in the equation of motion does not describe correctly the decay of the condensate. During the super-Hubble regime, relevant for ultralight dark matter, the condensate amplitude decays as . In the sub-Hubble regime the amplitude decays as with ; therefore, the finite temperature contribution to the decay rate vanishes fast during the expansion. A main conclusion is that a phenomenological friction term is inadequate to describe the decay in the super-Hubble regime, and the decay function is always than that from a local friction term as a consequence of the cosmological expansion. For ultralight dark matter, the timescale, during which transient dynamics is sensitive to cosmological expansion and a local friction term is inadequate, is much longer. A friction term always the timescale of decay in the sub-Hubble case. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available March 1, 2026
- 
            Tirziu, Alin (Ed.)We study the applicability of the finite temperature effective potential in the equation of motion of a homogeneous “misaligned” scalar condensate and find important caveats that severely restrict its domain of validity: (i) the of local thermodynamic equilibrium is in general not warranted, (ii) we show a direct relation between the effective potential and the thermodynamic entropy density , which entails that for a dynamical the entropy becomes a nonmonotonic function of time, (iii) parametric instabilities in both cases with and without spontaneous symmetry breaking lead to profuse particle production with nonthermal distribution functions, (iv) in the case of spontaneous symmetry breaking spinodal instabilities yield a complex effective potential, internal energy and , an untenable situation in thermodynamics. All these caveats associated with using the effective potential in the of the condensate cannot be overcome by finite temperature equilibrium resummation schemes. We argue that the dynamics of the condensate leads to decoupling and freeze-out from local thermodynamic equilibrium, and propose a quantum system approach based on unitary time evolution. It yields the correct equations of motion without the caveats of the effective potential, and provides a fully renormalized and thermodynamically consistent framework to study the dynamics of the “misaligned” condensate, with real and conserved energy and entropy amenable to numerical study. The evolution of the condensate leads to profuse with nonthermal distribution functions. Possible emergent asymptotic nonthermal states and eventual rethermalization are conjectured. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available January 1, 2026
- 
            Tirziu, Alin (Ed.)We critically examine the applicability of the effective potential within dynamical situations and find, in short, that the answer is negative. An important caveat of the use of an effective potential in dynamical equations of motion is an explicit violation of energy conservation. An effective potential is introduced in a consistent quasistatic approximation, and its narrow regime of validity is discussed. Two ubiquitous instances in which even the adiabatic effective potential is not valid in dynamics are studied in detail: parametric amplification in the case of oscillating mean fields, and spinodal instabilities associated with spontaneous symmetry breaking. In both cases profuse particle production is directly linked to the failure of the effective potential to describe the dynamics. We introduce a consistent, renormalized, energy conserving dynamical framework that is amenable to numerical implementation. Energy conservation leads to the emergence of asymptotic highly excited, entangled stationary states from the dynamical evolution. As a corollary, decoherence via dephasing of the density matrix in the adiabatic basis is argued to lead to an emergent entropy, formally equivalent to the entanglement entropy. The results suggest novel characterization of asymptotic equilibrium states in terms of order parameter vs energy density. Published by the American Physical Society2024more » « less
- 
            We introduce an effective field theory to study mixing of two fields induced by their couplings to a common decay channel in a medium. The extension of the method of Lee, Oehme, and Yang, the cornerstone of analysis of violation in flavored mesons, to include the mixing of particles with different masses provides a guide to and benchmark for the effective field theory. The analysis reveals subtle caveats in the description of mixing in terms of the widely used non-Hermitian effective Hamiltonian, more acute in the nondegenerate case. The effective field theory describes the dynamics of field mixing where the common intermediate states populate a bath in thermal equilibrium, as an . We obtain the effective action up to second order in the couplings, where indirect mixing is a consequence of off-diagonal self-energy components. We find that if only one of the mixing fields features an initial expectation value, indirect mixing induces an expectation value of the other field. The equal time two point correlation functions exhibit an asymptotic approach to a stationary thermal state, and the emergence of long-lived coherence which displays quantum beats as a consequence of interference of quasinormal modes in the medium. The amplitudes of the quantum beats are resonantly enhanced in the nearly degenerate case with potential observational consequences.more » « less
- 
            We obtain the nonequilibrium condensate of the Chern Simons density induced by a misaligned homogeneous coherent axion field in linear response. The Chern-Simons dynamical susceptibility is simply related to the axion self-energy, a result that is valid to leading order in the axion coupling but to all orders in the couplings of the gauge fields to other fields within or beyond the standard model except the axion. The induced Chern-Simons density requires renormalization which is achieved by vacuum subtraction.more » « less
- 
            We study the nonequilibrium dynamics of axionlike particles (ALP) coupled to Standard Model degrees of freedom in thermal equilibrium. The quantum master equation (QME) for the ALP reduced density matrix is derived to leading order in the coupling of the ALP to the thermal bath, but to all orders of the bath couplings to degrees of freedom within or beyond the Standard Model other than the ALP. The QME describes the damped oscillation dynamics of an initial misaligned ALP condensate, thermalization with the bath, decoherence, and entropy production within a unifying framework. The ALP energy density features two components: a “cold” component from the misaligned condensate and a “hot” component from thermalization with the bath.more » « less
- 
            We study the non-equilibrium dynamics of a pseudoscalar axion-like particle (ALP) weakly coupled to degrees of freedom in thermal equilibrium by obtaining its reduced density matrix. Its time evolution is determined by the in-in effective action which we obtain to leading order in the (ALP) coupling but to \emph{all orders} in the couplings of the bath to other fields within or beyond the standard model.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
